
CocoaHeads
Thurs May 15, 2008

1 iPhones to the silent position

2 NSCoder Night

3 WWDC Meeting: Wed, June 11

4 Joel Norvell: PDF Forms in Cocoa

5 Scott Stevenson: Best of Both Worlds

These Things First

Best of Both Worlds
Scott Stevenson

Xcode

Interface
Builder

Objective-C

Mac OS X

Design

Advanced

Roadmap

Culture

Xcode

Xcode
Projects, editing, source control
Uses gcc and gdb
Written with Cocoa, used by Apple
Third-party integration

Features
Templates
Code Completion
Inline Feedback
Debugging
Documentation
Visual gcc interface
Refactoring

Toolbars
Project View

Build Results

Debugger

Xcode Tour

Interface Builder

Interface Builder
Basic layout and setup
Prototyping
Visualizing
XIB and NIB files
Integrated with Xcode

Interface Builder Tour

Objective-C

Objective-C
Primary language for Cocoa
Object additions to C
Dynamic runtime
Weakly typed
Simple syntax
Best-kept secret
Can integrate with C++

Memory Management
Garage Collection on 10.5
Reference counting
Do not free object memory
Core Foundation

Memory Management
Object starts with 1
Increase with -retain, -copy
Decrease with -release, -autorelease
Final release triggers -dealloc

Runtime
Create methods at runtime
Intercept/redirect messages
Missing methods are warnings
Runtime loading of plug-ins
You may be subclassed at runtime

Typing
Objective-C is weakly typed: id
Toll-free bridging

NSString : CFStringRef
NSArray : CFArrayRef
NSDictionary : CFDictionaryRef

Messages
Not direct method calls
Can be perform delayed

NSString* value = [textField stringValue];

[textField setStringValue:@"Your Name"];
[textField setValue:name forKey:kNameKey];

[textField setValue:name
 forKey:kNameKey];

[nil setValue:name forKey:kNameKey];

Messages
Alternate syntax for accessors

NSString* value = textField.stringValue;
textField.stringValue = @"Your Name";

Only for setters and getters
Not direct ivar access

Classes
Separate header and implementation files
Single inheritance

@interface MyClass: NSObject {
NSString* title;
NSDate* creationDate;

}
- (NSString*) title;
- (NSDate*) creationDate;
- (void) setCreationDate: (NSDate*)newDate;
- (void) resetCreationDate;
- (void) setTitle: (NSString*)newTitle;
@end

@implementation MyClass

- (id) init
{

if (self = [super init])
{

title = nil;
}
return self;

}

@implementation MyClass

- (NSString*) title {
return title;

}

- (void) setTitle: (NSString*)newTitle {
[title autorelease];
title = [newTitle retain];

}

- (void) dealloc {
[title release];
[super dealloc];

}
@end

Classes
Creating objects

MyClass* object = [[MyClass alloc] init];

[object setTitle:title];
[object setCreationDate:[NSDate date]];
[object release];

@interface MyClass: NSObject {
NSString* title;

}
@property (retain) NSString* title;
@end

@implementation MyClass
@synthesize title;

- (id) init {
self.title = nil;

}
@end

Properties

Mac OS X

Mac OS X
Application Packages
Installation
Respect the user’s space:

~/Library/Application Support
~/Library/Preferences

Do not put anything in:

Home
Documents
/System/
Hidden Directories

App Package
Do not change contents
Essentials: keep self-contained

Application Support
Real data for non-document apps
Third Party Plug-ins

Preferences
Disposable
Standard format
Delete during testing

Background Processes
Don’t do it.
Seriously, don’t do it.

Design

The appearance and behavior
of the view layer.

The product.

Developer

User

Labels and Prompts

Use common words and complete
sentences.

Don’t use lingo or clever language.

Prompt only for multiple items.
Labels for everything else.

Simplicity and clarity win every time.

Model prefs design citizen: Safari

Icons

First impressions

Specialized Skill

Full size

Appealing

Functional and conceptual

Splash screens

Inventing your own UI style

Throwing files everywhere

Too much user interface

Bizarre font choices

Common Mistakes

Keep it simple.
If You Do Nothing Else

Culture

Use clear method names

Avoid subclassing

Learn the frameworks

Trust the frameworks

Use the highest level abstractions

Code Culture

Mac developers live online

Users buy into you

Respect your users

Mac news sites

Apple Top Downloads

WWDC

CocoaHeads (your are here!)

User Culture

Wrap Up

Wrap-up

http://theocacao.com/

